





Electrical Engineering, Photonic Integration

#### **Outline**

- Miniatiruzation in photonic integrated circuits
- Our technology on an InP membrane
- Recent demonstrations
- Summary



# Photonic Integration





Optical phased arrays, neuromorphic network, etc 1000s-10,000s components







#### Photonic Integration in a membrane

- Conventional InP technology face bottlenecks in density: they are too big
- InP membrane: InP amplifiers/lasers + SiPh-like nanowire waveguides
- Potential of wafer-scale assembly with electronics





#### **Double-sided processing**



- x2 times ultra-flat surfaces for DUV Scanner lithography
- Design freedom for optimal optical and electrical performances







## Lasers on nanophotonic waveguides

- S-shaped amplifier/laser for balanced confinement vs power handling
- Improve optical mode matching very short tapers
- No critical alignment (lithography overlay accuracy)







#### Membrane amplifier

- ~ 200 dB/cm net modal gain in 4-QW SOAs
- Essential building block for building lasers: DFB, DBR, tunable, etc1.
- Tapers are active, can be solved by regrowth or QW intermixing







#### **Mode multiplexing in Integrated Photonics**

- Non-resonant light recirculation has been used to boost efficiency in linear optical devices
- Thermo-optic phase shifter



Optica 7, 3-6 (2020)

And electro-optic phase shifters,







Communications Physics 6: 17 (2023)

APL Photonics 7, 106102 (2022)

• Its use in nonlinear devices (SOAs, EAMs) is not studied: investigated for first time in this work



#### Fab tolerant mode (de)multiplexers in InP membrane

- First mode multiplxer (5 modes) on InP
- Broadband (~ 100nm)
- EL < 1 dB, XT < -14 dB with 50nm width variation (highest reported)
- Compared to Si, InP offers higher fab tolerance due to moderate index contrast



#### Mode multiplexing in membrane SOAs

- Combining mode multiplexers and amplifiers made possible InP membrane technology
- TE<sub>1</sub> experiences slightly lower gain than TE<sub>0</sub>
- Use TE<sub>1</sub> to harvest "leftover" carriers from TE<sub>0</sub>





Non-resonant 2-pass SOAs based on mode multiplexing:

- Low-crosstalk in the MDM coupler suppresses resonance;
- Harvesting unused to obtain:
- Gain boosted without increase in pump current, and/or
- "Halved" footprint and pumped energy for the same gain.





2-pass amplified spontaneous emission:









2-pass net modal gain (500um long SOA at 4.1 kA/cm<sup>2</sup>):

- Gain boosted from 6.2 dB for single pass to 11.6 dB (87% enhancement)
- Wall-plug efficiency (300% enhancement)
- Absorption (as EAM) also boosted as seen in 1520-1540nm region





Saturation is earlier for 2-pass than 1-pass;

Significant advantage for low input powers (which is the case for most telecom, datacom and switching applications)









#### Ultracompact polarization controller

- Triangluar waveguide for extremely efficient polarization rotation
- High fabrication precision by exploiting natural "slow-etch" crystal plane
- Full TE/TM conversion (16 dB extinction) within **4 μm** length (record small)



## **Integrated isolator/circulator**

- First on-chip isolator on InP PICs (up to 34 dB isolation demonstrated)
- Direct integration right next to the InP lasers
- Novel polarization insensitive design utilizing ultracompact polarization controller







#### **Ultracompact phase shifters**

- Native n-InP conductive layer for efficient heating
- MMI-crossing structure for minimal optical loss
- Footprint < 100 μm², including metal tracks</li>







#### **Ultracompact phase shifters**

- Broadband 100 nm with low loss < 0.4 dB</li>
- Tuning efficiency 2.26 mW/ $\pi$ ; competitive figure of merit  $P_{\pi}$ \*Area
- InP has higher thermo-optic coefficient than Si -> theoretical 20% less power consumption



#### >110 GHz photodiode

Enabled by double-sided design and processing

#### Conventional design





- Uni-traveling-carrier (UTC) design
- Closer metal contacts without loss compromise



#### >110 GHz photodiode

- Internal Responsivity: 0.75 A/W (5μm×2μm)
- Bandwidth: > 110 GHz
- Ultralow capacitance 4 fF & Series resistance  $< 10 \Omega$











#### Laser and nanophotonics in one process flow

- An active-passive platform realized with a single process flow
- Re-use part of SOA layers for heaters and polarization controllers
- Eliminate the need of assembly or bonding for external light source





#### **Summary**

- Active-passive photonic integration on an InP membrane
- InP membrane nanophotonics enables compact and highly efficient devices for gain, absorption, polarization rotation and phase shifts
- Towards a complete integration platform for high-density applications



Thanks you for your attention!



