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Abstract— Nonlinearity is one of the key issues that hinder
the development of high-capacity optical short reach systems.
This paper proposes three variants of kernel affine projec-
tion (KAP) algorithms, all of which combine kernel mapping
and affine projection in a reproducing kernel Hilbert space
for compensating nonlinear impairments in optical short reach
systems. An intensity modulation/direct detection system with
a single digital-to-analogue converter, a packaged externally
modulated laser and a packaged InP photo-detector is used
for experimental demonstration, achieving 238-Gbps (net rate
222-Gbps). Experimental results show that the KAP algorithms
can mitigate nonlinear impairments in short-reach communica-
tions while maintaining low complexity in reproducing kernel
Hilbert space.

Index Terms— Equalizers, optical fiber communication, com-
munication system nonlinearities.

I. INTRODUCTION

THE increase in datacenter traffic drives to large capacity
requirements for short reach interconnections [1]. The
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standardization group of next generation short-reach interfaces
aims at 800-GbE and beyond [2], in which the data rate per
lane is expected to be upgraded to 100-Gbps, 200-Gbps or
even higher [2]–[4]. To meet such a high data rate, the intensity
modulation/direct detection (IM/DD) systems with advanced
modulation formats such as pulse amplitude modulation or
discrete multi-tone (DMT) have been experimentally demon-
strated [5]. However, the impairments from opto-electronic
devices, such as the chirp characteristics from the direct
modulated laser [6], nonlinear optical modulator transfer
function [7], saturated power amplification from the opti-
cal/electrical amplifier, inter-subcarrier signal-to-signal beating
interference at the photodetector [8], have become a major
performance-limiting factor in high-speed optical short-reach
systems. As a result, digital signal processing algorithms have
been proposed for compensating the aforementioned nonlinear
impairments [5].

The signal recovery process in the Hilbert space [14] is
considered as a most straightforward method for compensating
nonlinear impairments in optical short-reach communication
systems. In the Hilbert space, any signal vector could be
expanded on the basis vectors of the Hilbert space. The
properties of the Hilbert space make it suitable for solving con-
vex optimization problems, such as adaptive filtering. Several
nonlinear adaptive filtering schemes that are always carried
out in the Hilbert space, such as the Volterra filtering [9], [10]
and machine learning [11], [12] based equalization schemes,
have been introduced to realize 200-Gbps and beyond per
lane for optical short-reach communication systems. However,
the curse of dimension dilemma [13] induced high complexity
in these methods hinders their implementation in optical short-
reach systems. When the signal mapping order (i.e. signal
dimension) increases, the performance can be improved but
causing a significant increase in complexity. The Volterra
filtering employs high-order mapping of the input signal X,
such as X2 (mapping order of 2) and X3 (mapping order
of 3) multiplications, the complexity increases exponentially
with signal mapping orders. In the practical implementation,
we can limit the mapping order up to 3, i.e. X3. However, the
complexity is still high and the performance to mitigate non-
linear impairments is degraded. Meanwhile, machine learning
methods, such as neural network, compensate the nonlinear
impairments through multiple neural layers. The complexity is
even higher than the Volterra filtering and its implementation
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in the physical layer design of optical short-reach systems is
challenging.

The aforementioned nonlinear impairment compensation
methods are carried out in the Hilbert space, small per-
formance improvement requires a dramatic increase of the
calculation complexity when the signal mapping order is high.
Our previous works in [14] for the first time introduced
kernel mapping methods in optical short-reach communication
systems, where a kernel function is used for signal mapping.
As shown in Part A of Section II in this paper, such a
method [14], [15] makes linear signal processing carried out
in the high dimensional reproducing kernel Hilbert space
yielding powerful extensions to compensate the nonlinear
impairments. Two kernel mapping methods have been devised,
namely kernel least-mean-square (KLMS) [15] and kernel
recursive-least-squares (KRLS) [16]. On the one hand, the
KLMS is with the linear number of multiplications in term
of training data size, while the KRLS is with the quadratic
number of multiplications in term of training data size. On the
other hand, the KRLS greatly outperforms the KLMS on
transmission performance. Both the KLMS and KRLS can
achieve comparable performance with the Volterra filtering,
and the KLMS shows a smaller number of multiplications than
the high-order Volterra filtering.

In this paper, we present kernel affine projection (KAP)
algorithms that combine kernel mapping and affine projection
for channel equalization in optical short-reach communica-
tions. As an extension of our previous work in [17], three
variants of the KAP equalizers, namely the gradient descent
method, stochastic Newton’s recursion method and regularized
Newton’s recursion method are introduced for coefficients
convergence. In addition, error reuse criterion is included
for complexity reduction. All three variants of the KAP can
perform as good as the KRLS and common Volterra filtering
considering nonlinear kernels up to the 4th order, while the
required number of multiplications in the regularized Newton’s
recursion based KAP is lower than the KLMS and common
Volterra filtering.

II. OPERATIONAL PRINCIPLES

In this section, we depict operational principles of affine
projection algorithm and kernel affine projection algorithm.
The description starts from a brief introduction of the basic
kernel mapping. The main idea of the KLMS and KRLS is
reviewed.

A. Kernel Mapping

Kernel mapping follows the classic methodology for linear
adaptive filtering, while using Mercer kernel function as input
signal mapping function. Mercer kernel κ(x, x’) is a continuous
and symmetric basis function defined in the reproducing kernel
Hilbert space, where x and x’ are the signal vectors. In this
paper, the Gaussian kernel function with inner production
manner is utilized as the expression of Mercer kernel κ(x,
x’):

κ(x, x′) = exp(−||x − x′||2/2h2), (1)

where h is the Gaussian kernel bandwidth. Functions f and g
are defined as follows:

f = ΣN
i=1αiκ(xi, ·), g = ΣM

j=1βjκ(xj, ·), (2)

where αiand βj are the coefficients of the vectors xi and xj,
respectively. The bilinear form of f and g is defined as:

< f, g >= ΣN
i=1Σ

M
j=1αiβjκ(xi, xj). (3)

The bilinear form in (3) satisfies the symmetry, linearity and
positive definitive properties [14] and (3) can be considered
as the inner product. Besides, it also meets the condition of
the reproducing property [14], expressed as:

< f, κ(·, xj) >= ΣN
i=1αiκ(xi, xj). (4)

Thus, the kernel function meets the conditions of both the
inner product and the reproducing property. Such a function is
recognized as the reproducing kernel function, and the space
composed of the kernel functions is called reproducing kernel
Hilbert space. The vector signal x in the Hilbert space is
mapped to the reproducing kernel Hilbert space by the kernel
function κ(., x), and the linear processing mechanism f + g
is transformed to an inner product calculation < f , g >.
An important rule of the kernel function κ(x, x’) is expressed
as (2).

κ(x, x′) =< ϕ(x), ϕ(x′) >= ϕ(x)Tϕ(x′). (5)

The kernel mapping function ϕ is the feature vector (i.e.
basis vector) of the reproducing kernel Hilbert space. Our pre-
vious work in [14] demonstrates the Gaussian kernel function
is capable of processing all the orders of the kernels, i.e., (1,
x, x2, x3, …), where the higher orders (x2, x3, …) represent
nonlinear impairments, the kernel mapping functions of (1) is:

ϕ(xi)
= exp((−x2

i /2h2)∗(1, a1
∗xi/h, a2

∗x2
i /h2, a3

∗x3
i /h3 . . .),

(6)

where xi is an element of vector x. Therefore, after the kernel
mapping the nonlinear effects are transformed into the inner
production in (1). The usage of the Gaussian kernel function
does not need the concrete high-dimensional expansion shown
in (6). As a result, the strategy to employ kernel mapping is
to formulate the classic linear signal processing in the repro-
ducing kernel Hilbert space to iteratively mitigate nonlinear
impairments. In our previous work [14], we have introduced
the mathematical principles of kernel mapping and derived
the KLMS and KRLS algorithms for compensating nonlinear
impairments in optical short reach systems.

The main principle of KLMS is overviewed as follows.

e(i) = d(i) − w(i − 1)Tϕ(x(i)), (7)

w(i) = w(i − 1) + ηe(i)ϕ(x(i))
= w(i − 2) + ηe(i − 1)ϕ(x(i − 1)) + ηe(i)ϕ(x(i))
= · · · · · ·
= w(0) + Σi

k=0ηe(i − k)ϕ(x(i − k)). (8)

The transmitted training data signal at the i-th time sampling
point is d(i), and x(i) is the received training signal vector
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at the receiver side, which can be used to estimate d(i).
We denote the equalizer coefficient vector as w. η is the
step-size factor for algorithm convergence. e(i) is the error
signal at the i-th iteration and w(0) could be set to 0. According
to (8), after the i-th training sample, the weight estimation
is expressed as a linear combination of all the previous and
present transformed inputs, weighted by the prediction errors
(and scaled by η). When the estimated weights are used to
compensate a new set of received vector x’, the recovered
signal is calculated by:

w(i)ϕ(x′) = ηΣi
k=1e(k)ϕ(x(k))Tϕ(x′)

= ηΣi
k=1e(k)κ(x(k), x′). (9)

It is interesting to find the weight w absent in the equalized
signals that are influenced by the nonlinear impairments.
Instead, the sum of all past errors is multiplied by the kernel
mapping on the previously received data (i.e., training data).
It proves that the kernel mapping is a process without referring
to the equalization coefficient w and the high-dimensional
function ϕ. The KRLS also follows the same methodology as
the aforementioned KLMS by transforming x to ϕ(x) but has
the target to minimize the recursive square errors. Therefore,
the KRLS has much higher complexity than the KLMS.
In this paper, we extend the kernel mapping by combining
affine projection algorithm that reduces the gradient noise by
multiple consecutive samples, which is referred to as kernel
affine projection (KAP).

B. Affine Projection

Here, we present the operational principle of affine pro-
jection (AP) algorithm [19]. The training data set is {d(i),
x(i)}i=1,2,...N , where N is the training data size. We denote
the equalizer coefficient vector as w. The objective function
of the equalizer is:

minwJ(w) = E|d − wTx|2. (10)

The Wiener solution for (10) is:

w = R−1
x Rdx, (11)

where Rx is the positive-definite covariance matrix of x and
Rdx is the cross-covariance vector of d and x. The LMS
aims at minimizing the instantaneous squared estimation error,
while the RLS minimizes the sum of squared estimation errors
collected at the previous time points and the current time point.
As a result, the LMS has the linear computational complexity
and the RLS has the quadratic computational complexity
with respect to N . Even after combining with the kernel
mapping, such complexity properties remain for the KLMS
and the KRLS. There are several methods reported to estimate
w iteratively. Here, the gradient descent method [18], [19]
and stochastic Newton’s recursion method [18], [19] are first
introduced. The update equation of w at the i-th iteration of
gradient descent method is:

w(i) = w(i − 1) + η[Rdx − Rxw(i − 1)], (12)

where η is the step-size factor for algorithm convergence.
For stochastic Newton’s recursion method to increase the
convergence speed, the update equation of w is:

w(i) = w(i − 1) + η(Rx + sI)−1[Rdx − Rxw(i − 1)],
(13)

where s is the smoothing factor. In the AP algorithm, Rx and
Rdx are estimated by using the K most recent inputs and
observations. Assuming:

x(i) = [x(i − K+1) . . .x(i)], (14)

D(i) = [d(i − K+1) . . . d(i)]. (15)

Rx and Rdxcan be estimated by:

Rx = K−1X(i)X(i)T, (16)

Rdx = K−1X(i)d(i). (17)

Accordingly, the update equation of equalizer coefficient w
in the AP using gradient descent method (referred to AP-G)
is:

w(i) = w(i − 1) + ηX(i)[D(i) − X(i)Tw(i − 1)]. (18)

The equalizer coefficient update equation of w in the AP
using stochastic Newton’s recursion method (referred to as
AP-S) is:

w(i) = w(i − 1) + ηX(i)[X(i)TX(i)+sI]−1

×[D(i) − X(i)Tw(i − 1)]. (19)

Equitation (18) and (19) show how the equalizer coefficient
is updated in the AP algorithm. It improves performance of the
LMS algorithm by taking into accounting the K most recent
inputs, while keeping linear operations and resulting in a low
computational complexity.

C. Kernel Affine Projection

The KAP combines the kernel mapping with the AP algo-
rithms. Its equalizer coefficient update equation shown in (18)
and (19) needs to be modified by adding kernel mapping
feature function ϕ(x(i)). The objective function of equalizer
is:

minwJ(w) = E|d − wTϕ(x)|2. (20)

The corresponding equalizer coefficient update equation at
the i-th iteration of the KAP using gradient descent method
(referred to KAP-G) is:

w(i) = w(i − 1) + ηΦ(x(i))[D(i) − Φ(x(i))Tw(i − 1)]
= w(i − 1) + ηΦ(x(i))e(i), (21)

where Φ(x(i)) = [ϕ(x(i-K+1)) …ϕ(x(i))] and e(i) is the
equalizer error at the i-th sampling point. (21) is expanded
iteratively by using the same methodology as the KLMS and
KRLS [14]:

w(i) = w(i − 1) + ηΦ(x(i))e(i)
= w(i − 2) + ηΦ(x(i))e(i) + ηΦ(x(i−1))e(i−1) . . .

= Σi
j=1aj(i)Φ(x(j)). (22)
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Fig. 1. (a) Schematic diagram of the KAP, (b) construction of the KAP
output.

Algorithm 1 The signal processing flow of the KAP-G.
1. Set η, K and choose kernel function κ, i = 1;
2. a1(1)= ηd(1);
3. while i ≤ N do
i. ai(i-1)=0;
ii. for k = max(1, i-K + 1) to i do
a) eK+k−i(i) = d(k)- Σi−1

j=1{aj(i-1)κ(x(k), x(j))}
b ak(i) = ak(i-1)+ηeK+k−i(i)
c) end for
iii. if i>K do
a) for k = 1 to i-K do
b) ak(i) = ak(i-1)
c) end for
iv. end if
v. i = i+1
vi. end while
4. Equalizer output of data signal x’:

f (x’)= ΣN
j=1{a(j)κ(x(j), x’)}

The parameter aj(i) is the intermediate coefficient to get
w(i) and determines the final equalizer output. The relevant
update function is shown in Algorithm 1.

It could be found that the convergence of the equalizer only
depends on the kernel mapping feature function matrix Φ(x(i))
and error signal e. By multiplication of w(i) and received
signal vector ϕ(x’), kernel function κ(x, x’) is utilized for
equalization.

The signal processing flow of the KAP-G is shown in
Algorithm 1 and the schematic diagram of the KAP is shown
in Fig. 1. In Fig. 1(a), the transmitted data is d, after passing
through the short-reach system, training vector x and testing
vector x’ are obtained. The training vector is used to train the
coefficient a by calculating the error vector e. In Fig. 1(b),

the trained coefficient a is used to equalize the testing vector
x’ by f (x’)= ΣN

j=1{a(j)κ(x(j), x’)}.
Regarding the KAP using stochastic Newton’s recursion

method (KAP-S), the update formula in (21) is transformed
to (23). Compared with the KAP-G, the signal processing
routine of the KAP-S is similar except normalizing the error
by [Φ(x(i))TΦ(x(i))+sI]−1 and thus

w(i) = w(i − 1)
+ηΦ(x(i))[Φ(x(i))TΦ(x(i)) + sI]−1e(i). (23)

D. Error Reuse Criterion

The most complicated calculation in the KAP is error
calculation, which consists of (i-1)∗K kernel calculations
to compute w(i), making its number of multiplications K
times of the KLMS. By ‘error reuse’ criterion shown in (24),
the number of multiplications could be squeezed.

e(K + k − i) = d(k) − ϕ(x(k))Tw(i−1)

= d(k) − ϕ(x(k))T[w(i−2)
+ηΣi−1

j=i−K{e(K + j−(i−1))ϕ(x(j))}]
= [d(k) − ϕ(x(k))Tw(i−2)]

+ηΣi−1
j=i−K{e(K+j−(i−1))κ(x(k), x(j))}

= e(K + k − (i − 1))

+ηΣi−1
j=i−K{e(K+j − i+1)κ(x(k), x(j))}.

(24)

As a result, the number of kernel calculations is reduced
from (i-1)∗K to (i-1), and the computational complexity
in terms of number of multiplications will be discussed in
Section. IV.

E. Regularized KAP

To improve the convergence speed of convex optimization
in the KAP, a regularization process is introduced in this paper.
Here the regularized Newton’s recursion method is used and
the regularized KAP is referred to as KAP-R. The objective
function of the KAP-R is updated as:

minwJ(w) = E|d − wTϕ(x)|2 + λ||w||2, (25)

where λ is the regularization parameter and its value is smaller
than 1. In the KAP-R, the update formula in (21) and (23) is
transformed to (26).

w(i) = (1 − η)w(i − 1) + ηΦ(x(i))[Φ(x(i))TΦ(x(i))
+λI]−1D(i). (26)

Compared with the KAP-G and KAP-S, the KAP-R uses a
scaling factor 1-η to multiply the previous weight, and imposes
a forgetting mechanism so that the training data from the far
past is not needed and the total amount of training data can
be scaled down exponentially. Therefore, the data from the far
past does not influence the equalizer output and the training
of the coefficient is more accurate.

Considering the complexity, the KAP-R updates the weights
without the error signal e, and uses matrix Φ(x(i))TΦ(x(i))+λI
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Fig. 2. Experimental setup.

Fig. 3. Optical spectrum of TWEAM with different modulation amplitudes.

instead. Using the sliding-window trick defined in [20],
the complexity of KAP-R can be reduced to K2, showing
another implementation benefit.

III. EXPERIMENTAL SETUP

The experimental setup and the signal processing flow
scheme demonstrating the feasibility of the KAP in optical
short-reach system are shown in Fig. 2. The DMT samples are
generated offline and loaded into a 120-GSa/s DAC (Keysight
M8194A). The signal from the DAC is amplified by an elec-
trical amplifier with 11-dB gain before applying on the EML
for modulation. The EML is composed of a monolithically
integrated distributed feedback (DFB) laser with a travelling-
wave electro absorption modulator (TWEAM) [21], [22]. The
PD is a high-speed InP packaged prototype photo-detector
with a responsibility of 0.5-A/W. The electrical signal from
direct-detection is captured by one 256-GSa/s digital storage
oscilloscope (DSO, Keysight UXR1102A). In the experiment,
the length of inverse fast Fourier transform (IFFT) for DMT
modulation is set to 2048, which corresponds to 58.6-MHz
subcarrier spacing. The clipping ratio of the DMT signal is
set to 0.75 to improve the signal to noise ratio (SNR) out of
the DAC. The output amplitude of the DAC is set to 700-mV.
The modulated optical signal from the EML (∼0.5-dBm) is
fed into a spool of 400-m standard single mode fiber (SSMF).
Because of the lack of trans-impedance amplifier (TIA), one
erbium doped fiber amplifier (EDFA) together with a variable
optical attenuator (Att.) is used before PD to study the receiver
sensitivity.

Fig. 4. BER performance of KAP-G versus K and TS.

Fig. 5. BER performance of the KAP-S and KAP-R versus K .

The optical spectrum of DFB-TWEAM with different mod-
ulation amplitudes (peak-to-peak voltage) is shown in Fig. 3.
It displays a red shift with respect to a larger electrical signal
amplitude due to the thermal regime variation caused by
microwave absorption of impedance matching resistors [22].
This implies that memory nonlinearities are introduced when
the DMT signal with a large swing is used for modula-
tion. Besides the modulation nonlinearity of the EML, the
nonlinearity of the short-reach DMT fiber communication
system also comes from other sources, such as inter-subcarrier
mixing in square-law detection, clipping of the signal and the
nonlinearity from electrical amplifiers due to the high peak-
to-average power ratio (PAPR) of the DMT signal [9].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The BER performance in terms of K and training sym-
bols (TS) in the KAP-G is shown in Fig. 4 and the BER
performance in terms of K in the KAP-S and KAP-R is
shown in Fig. 5. Here, the KAP is employed on top of the
linear equalizer [24]. The received optical power (RoP) is
8-dBm. The size of length of each DMT training symbol is
2048 DMT samples (i.e., TS=1 corresponds to N = 2048),
which corresponds to the IFFT size. In the experiment, there
are 80 DMT symbols in total. The increase of K in the KAP
improves the BER gradually. In Fig. 4, the same trend can
be observed from the curves for the KAP-G with different
numbers of training data size. In the experiments, the trend
is the similar for the KAP-S and KAP-G, and their BER
performance is only shown with TS=4 in Fig. 5. The BER
improvement tends to get statured when K increases. With the
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Fig. 6. Adaptive bits allocation at SSMF transmission and recovered
constellation graphs with and without the KAP-S equalizer.

Fig. 7. (a) Subcarrier SNR gain of the KAP-G, (b) probability distribution
of subcarrier SNR gains.

normalization factor, the KAP-S achieves better transmission
performance compared with the KAP-G at different K values,
and the KAP-R achieves better performance compared with
the KAP-S because of its regularization operation. N of 8192
(TS=4) and K of 40 are selected for the experiment results
here. It is worth noticing that periodical training could save
the number of TSs. For example, carrying out training 4 times
each using 1 TS is able to achieve the similar performance as
one-time training but with 4 TSs. For latency-sensitive cases,
the trade-off between the training time and the number of
training symbols should be carefully taken into account.

The adaptive bits loading profile [23] at SSMF short-reach
transmission case is shown in Fig. 6. The QAM orders ranging
from BPSK to 64QAM are adopted in the system. The mean
allocated bits is 4.82. The constellation graphs of 16QAM,
32QAM and 64QAM with and without the KAP-S are shown
in the insets of Fig. 6. For minimizing linear impairments,
the linear equalizer presented in [24] is used regardless of
whether the KAP-S is implemented. It can be seen that the
SNR has been obviously improved and the constellation points
are clearer. It benefits nonlinear impairments compensation
from the KAP-S since the nonlinear impairments makes the
constellations scattered and the Euclidean distance between
constellation points are reduced.

The SNR gain at different subcarriers of the KAP-G, KAP-
S and KAP-R and their probability distributions are shown
in Fig. 7, Fig. 8 and Fig. 9, respectively. The SNR gain is
defined as the difference between the SNR of each subcar-

Fig. 8. (a) Subcarrier SNR gain of the KAP-S, (b) probability distribution
of subcarrier SNR gains.

Fig. 9. (a) Subcarrier SNR gain of the KAP-R, (b) probability distribution
of subcarrier SNR gains.

TABLE I

THE BER WITH DIFFERENT EQUALIZERS

rier after and before the equalizer. There are SNR gains at
most subcarriers in DMT signal. The SNR gain is higher at
low-frequency range and lower at the high-frequency range
for the KAP-G, KAP-S and KAP-R, which is caused by the
low-pass filtering effect of the system response. The maximum
subcarrier SNR gain of the KAP-G and KAP-S are around 6-
dB, and the average SNR gain of the KAP-G, KAP-S and
KAP-R are 1.55-dB, 2.26-dB and 2.68-dB respectively. The
results are also in line with the observations in Fig. 4 and
Fig. 5, where the KAP-R shows the best transmission perfor-
mance.
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TABLE II

THE EQUALIZER COEFFICIENT

wUPDATE EQUATION AND NUMBER OF MULTIPLICATIONS OF DIFFERENT NONLINEAR EQUALIZATION METHODS

Fig. 10. System transmission performance.

The BER versus the RoP is shown in Fig. 10. We consider
continuously-interleaved Bose–Chaudhuri–Hocquenghem
FEC (CI-BCH (1020, 988)) [25], [26] with a BER-
limit of 4.52E-3. The CI-BCH FEC BER-limit could be
achieved only when the KAP is employed on top of
the linear equalizer [24], and the KSP-R achieves the
best performance compared with the KAP-G and KAP-S.
Therefore, it demonstrates capability of the KAP to mitigate
nonlinear impairments in optical short-reach systems. The
maximum system line rate can achieve is 238-Gbps with the
net rate of 222-Gbps.

The BER for different equalizers measured at the RoP
of 8-dBm is compared in Table I. The Volterra filtering with a
memory length of 11 is included for comparison purpose. All
the compared equalizers are used on top of the linear equal-
izer [24]. The KAP-G outperforms the KLMS, and the KAP-S
algorithm achieves similar performance as the KRLS and the
Volterra filtering algorithm with nonlinear kernels up to the
4th order. The KAP-S obviously outperforms the KLMS and
Volterra filtering algorithm with nonlinear kernels up to the
2nd/3rd order. The KAP-R achieves the best performance since
it has retained the advantages of KAP-S while minimizing the
negative effect of the far past samples on the decision sample.

A. Complexity Analysis

Considering the storage complexity, the KAP obtains coef-
ficients just like the KLMS, and it avoids the least-square

problem in the KRLS. The KAP has linear storage complexity
in terms of the number of iterations (i.e. the length of training
symbols, N , i.e. O(N) [18], [27].

The number of multiplications of the kernel methods mainly
depends on the size of the reproducing kernel Hilbert space.
A factor that influences this size is the number of train-
ing symbols N . For the KAP-G and KAP-S, their number
of multiplications is equal to N + K2, which shares the
same order with the KLMS [14], [18], [27]. Comparatively,
the number of multiplications of the Volterra series equalizer
is

∑P
p=1 (Mp)p, where Mp is the tap number (i.e. memory

length) of the p-th order nonlinear kernels. Table II shows
the number of multiplications of different algorithms. The N
of 8192 and K of 40 are selected to compare the kernel
methods with the Volterra filtering. Since the KAP-R does
not need the calculation of the error signal e, and uses matrix
Φ(x(i))TΦ(x(i))+λI for weight update. The required number
of multiplications is reduced to K2.

It is worth noticing that the sparsification techniques could
be adopted for reducing the length of the training symbols,
such as the novelty criterion (NC), the coherence criterion,
the quantization criterion and surprise criterion [28]. In [29],
the number of multiplications of the KLMS has decreased
from 5000 to 150 after NC sparsification. Therefore, sparsi-
fication techniques could be an interesting tool to simplify
the KAP for channel equalization in short-reach optical links.
There are some research works on simplified Volterra filtering,
such as reduced Volterra kernels [32], sparsifications [33],
regularization [34], frequency transformation [35]. Moreover,
the KAP provides a flexible and general way to transform
to the other kernel mapping based equalization algorithms.
For instance, the KAP-G transforms to the KLMS when K
is equals to 1, which can be observed from Table II. When
K is equal to N , the KAP-S transforms to regularization
network [18], which shows a potential of implementing the
KAP for machine learning based tasks.

V. CONCLUSION

The proposed kernel affine projection algorithms is efficient
for compensating nonlinear impairments in optical short-reach
systems. All the variants of the KAP algorithms have a
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TABLE III

ABBREVIATIONS IN THE PAPER

comparable number of multiplications with the KLMS and
are able to achieve comparable performance with the KRLS,
having the merits of both algorithms while avoiding their
drawbacks. We have experimentally demonstrated a 222-Gbps
net rate IM/DD DMT system, where the KAP algorithms
greatly improve the transmission performance.

APPENDIX

See Table III.
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