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Abstract—The booming internet traffic sets highly 
challenging requirements for high-speed computing where low 
latency is required. This leads to a choice of intensity modulation 
and direct detection system with the highest baudrate possible. 
Furthermore, record baudrate supporting modulators will be the 
key technology for future optical interconnect applications. 
Therefore, we demonstrated silicon photonics and indium 
phosphide modulators at highest possible sysmbolrate. 
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I. INTRODUCTION 
The Data Center links need to scale according to Internet 

traffic in an energy efficient manner with low latency. For this 
purpose, optical 0.8 - 1.6 Terabit links based on intensity 
modulation and direct detection system with highest possible 
baudrate per lane are desirable [1]. Silicon photonics ring 
resonator modulator with integrated laser demonstrated 
128 Gbaud on off keying [2]. Multichannel integration 
advantages of SiP RRM have been shown by implementing 4 
x 224 Gbps [3]. Also, very high symbol rates have been 
demonstrated with think film lithium niobate [4] and 

plasmonic modulators [5]. In this paper, we are going to report 
on recent advances on high-baudrate modulators in silicon 
photonics (SiP) and indium phosphide (InP) technologies. We 
are going to report on SiP ring resonator (RRM) and Mach-
Zehnder modulators (MZM) [6], [7] and on InP based 
externally modulated (EML) and directly modulated lasers 
(DML) [8], [9]. In case of InP modulators we demonstrate the 
highest possible symbol rates with monolithically integrated 
and packaged components without optical amplification. 

II. EXPERIMENTAL SETUP 
Figure 1 shows the experimental setup for testing SiP and 

InP modulators. The signal bit sequence for on-off keying is 
generated offline in MATLAB from a random binary sequence 
of >1 million bit-length obtained using the Mersenne Twister 
generator with a shuffled seed number. The obtained bit 
sequence is firstly digitally up-sampled to 4 samples per 
symbol, pulse-shaped with root-raised-cosine (RRC) filter 
with different roll-off factor, and down-sampled to 256 GSa/s 
to match the sampling rate of the arbitrary waveform generator 
(AWG, prototype of Keysight M8199B). For Fig. 1(a), the 
output voltage swing of the AWG is set to be 2.7 Vpp for RRM 
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and 2.2 Vpp per arm for MZM resulting in a total swing of 
4.4 Vpp for the differential drive. SiP modulators are reverse 
biased using 110 GHz bias-tees at 1.15 V. Signal and bias are 
applied to modulators using 67 GHz RF probes. The output 

power of the tunable laser is set to +15.5 dBm and coupled into 
the modulators using grating couplers. For both modulators, at 
67 GHz we measure less than 10 dB attenuation. The smooth 
roll-off in the frequency transfer function makes the usable 
modulator bandwidth far beyond 67 GHz. For Si MZM tunable 
laser wavelength is set to 1556.554 nm to ensure lower 
coupling losses from grating couplers. The heater current is set 
to 6.65 mA for MZM to set the optimal operation point (4 dB) 
after optimization. After optimization to determine the best 
resonance for modulation, Si RRM tunable laser wavelength is 
set to 1536.947 nm, which corresponds to 7.6 dB detuning. To 
avoid RRM instability due to self-heating, the heater current is 
set to 3.6 mA. After optical modulation the signal is 
transmitted over 100 m of SMF. An Erbium-doped fiber 
amplifier (EDFA) with an output power of 13 dBm is used to 
overcome coupling losses. Wavelength selective switch (WSS) 
is used to filter out the amplified spontaneous emission noise, 
resulting in up to 6.6 dBm optical power on 70-GHz PIN 
photodiode (PD), which is used to receive a signal from both 
modulators. The signal from PD is delivered to a 110-GHz 
real-time digital storage oscilloscope (DSO, 256 GSa/s, 
Keysight UXR1104A). For RRM PAM4 transmission a 
packaged electrical amplifier with a gain of 22 dB is used after 
PD.  

In Fig.1 (b) the AWG output voltage swing is 2.3 Vpp after 
embedded electrical amplification. In the case of the C-band 
EML, the module is directly connected to the AWG output 
with a 1-mm connector adaptor as can be seen in the inset in 
Fig.1. For the O-band DML, a 110-GHz bias-tee is used to 
deliver the laser bias current. A 1-mm connector adaptor is 
used to connect the bias tee to the output of AWG. Also, as the 
DML is in the package with a 1.85 mm connector and an 
adaptor to 1-mm is needed, see the inset in Fig.1. This affects 
the performance of the DML-based transmitter at a high 
baudrate. The EML is regulated to operate at 17°C to emit +3.6 
dBm optical power after electro- absorption modulation, and 
the DML is regulated at 19°C and has an output power of +7 

 
Figure 1. (a) experimental setup for SiP modulators on chips, (b) experimental setup for packaged InP-based modulators. 
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Fig. 2.  End-to-end system calibration, modulator and AWG responses. 

(a)

(b)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 17,2023 at 11:16:40 UTC from IEEE Xplore.  Restrictions apply. 



dBm when biased. The bias currents are shown in Fig.1(b).  
Due to the different operational bands of the two transmitters 
varied transmission distances can be achieved, i.e., 100-meter 
SMF for the C-band EML-based transmitter, and 6-kilometer 
SMF for the O-band DML-based transmitter. A 100-GHz PIN 
photodiode is connected to a packaged electrical amplifier of 
11 dB gain with a 1-mm adaptor at the receiver. In this 
configuration, we can deliver up to 120 mV of an electrical 
signal to a 110-GHz real-time digital storage oscilloscope 
(DSO, 256 GSa/s, Keysight UXR1104A). Calibrated end-to-
end amplitude and phase responses of the EML and DML-
based setups without the optical fiber link are shown in Fig. 2. 
The intrinsic response of the AWG is shown as a reference. We 
can see that EML and DML-based setups in amplitude 
experience quite similar performance until 65 GHz. The main 
difference can be seen in phase response where DML-based 
setup is different already starting from 30 GHz. Here we clarify 
that obtained end-to-end amplitude and phase responses of the 
EML and DML-based setups are not used in digital signal 
processing routines. We obtain them for visualization purpose. 
In the paper we rely only on post- equalization. Applying pre-
equalization would lead to a limited voltage swing resulting in 
poor performance of the entire link. Therefore, we decided to 
skip pre-equalization completely. In addition, we can use post-
equalization only thanks to the fact that the 20-dB end-to-end 
system bandwidth for both setups is above 70 GHz. The signal 
is processed offline with a matched filter, a timing recovery 
and down-sampling process based on maximum variance, a 
symbol-spaced decision-feedback equalizer (DFE) with 
different feedforward (FF)-tap and feedback (FB)-tap 
configurations, and the BER is counted. 

III. RESULTS AND DISCUSSIONS  
We evaluate the performance of both modulators with three 

modulation formats at a 6.25 % OH HD-FEC threshold of 
4.5×10-3 for optical back-to-back (ob2b) and after 

transmission over fiber. Figure 3 shows selected eye diagrams 
of SiP modulators for ob2b, captured at the highest received 
optical power. However, Figure 4 shows selected eye diagrams 
of InP modulators after transmission, captured at the highest 
received optical power. We have shown highest symbol rates 
for OOK with all modulators in this work. 
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Fig. 3. Eye diagrams for both RRM and MZM. 
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Fig.4.  Eye diagrams for on-off keying obtained with InP transmitters. 
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