TWILIGHT

Towards the ne**W** era of 1.6 Tb/s System-In-Package transceivers for datacenter app**L**Ications exploiting wafer-scale co-inte**G**ration of InP membranes and InP-**H**BT elec**T**ronics

TWILIGHT Project Presentation

www.photonics21.org

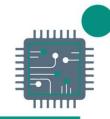
Call identifier: H2020-ICT-2019-2

Topic: ICT-05-2019: Application driven Photonics

Components

Scope: Photonics System on Chip/System in Package for

optical interconnect applications


Type of Action: Research and Innovation Action

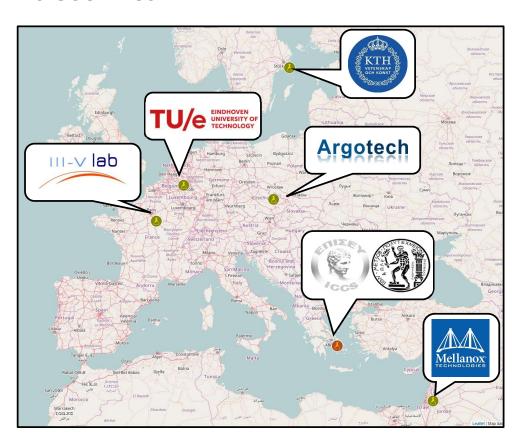
Contract No: 781471 Duration: 48 months

Start Date: 1st December 2019 **End Date:** 30th November 2023

Requested EC contribution: € 5,080,621.25

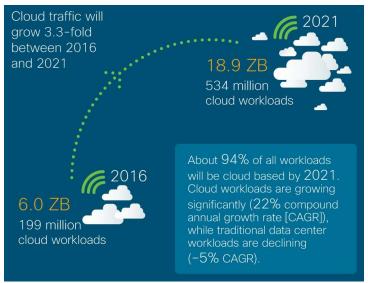
Website: https://ict-twilight.eu/

Consortium

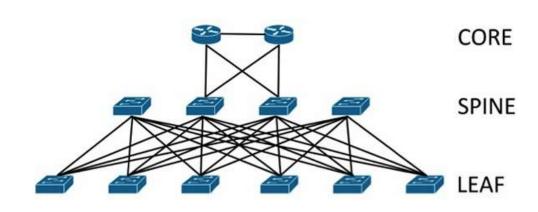


6 partners

- Project Coordinator: Institute of Communications & Computer Systems, ICCS (GR)
- Technische Universiteit Eindhoven, TU/e (NL)
- III-V Lab, III-V LAB GIE (FR)
- Kungliga Tekniska Hoegskolan, KTH (SE)
- Argotech, AT (CZ)
- Mellanox Technologies LTD, MLNX (IL)


6 countries

The challenge


Global Internet traffic trends

Source: Cisco Global Cloud Index (GCI) 2016-2021 forecast http://business-technology-roundtable.blogspot.com/2018/02/hybrid-it-demand-fuels-multi-cloud.html

- Cloud datacenter (DC) traffic will reach 19.5 ZB per year by 2021 ramping up from 6 ZB in 2016
- 71% of this traffic stays within the datacenter

Datacenter Architecture

- Increasing number of endpoint connections
- Stringent latency constraints from modern IoT applications

The path to 1.6T

"TWILIGHT will develop high capacity optical transceivers for intra- and inter- datacentre connectivity over 2, 10 and 40 km; that is two generations ahead with respect to existing

400GbE technologies"

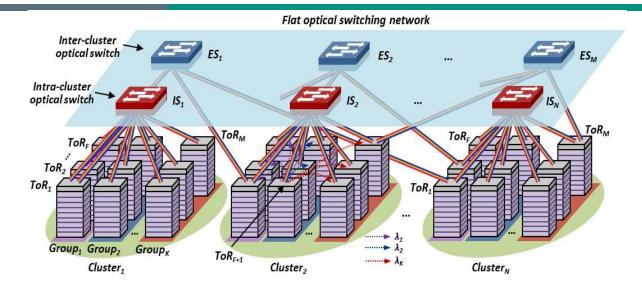
400GbE pluggables (QSFP-DD, OSFP)

√ 2017: 28G EMLs, 8 lanes

√ 2019: 56G EMLs. 4 lanes

800GbE: Stepping stone to 1.6T

Possible with existing 56G technologies i.e. 100 Gb/s signalling based on PAM4 and 8 lanes


1.6T (Multi-Chip-Modules)

- √ 112 Gbaud per lane
- ✓ Intimate co-integration of photonics & electronics
- ✓ End of pluggable form factors & advent of Multi-Chip-Modules

Towards all-optical datacenter architectures

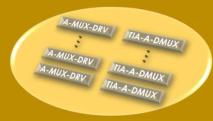
"TWILIGHT will develop ultra-fast & scalable optical space switches for intradatacentre connectivity"

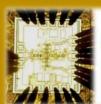
- Datacenter architectures evolved from typical fat tree to leaf-spine topologies.
- Flat optical architectures increase switching efficiency and minimize latency.
- Optical space switches for the interconnection of 100s of Top-of-Rack (ToRs) and 10s of board-level switches required:
 - Large port count
 - Nanosecond switching speed

TWILIGHT vision

per lane Gpand

approach


InP membrane technology system-on-chip photonic platform


- Low loss & high speed platform Large scale monolithic integration enabling PICs with advanced
- 100 GHz electroabsorption modulated lasers (EMLs) & Photodiode arrays
- **Ultra-fast Polarization** insensitive semiconductor optical amplifiers
- Passive wavelenath Mux & DeMux

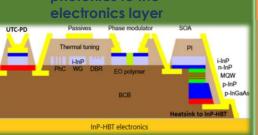
InP-DHBT electronics technology

- Analog time-domain electrical ✓ multiplexing and demultiplexing
- Linear amplification with gain peaking

100 GHz Driver Amplifiers and Transimpedance Amplifiers with built-in analog MUX and DeMUX

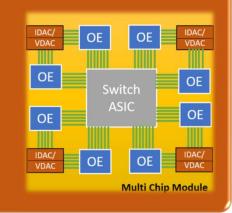
Wafer-level bonding

Intimate interconnection of photonics and electronics (10-20 um)


functionalities

Compact optical

routing on chip

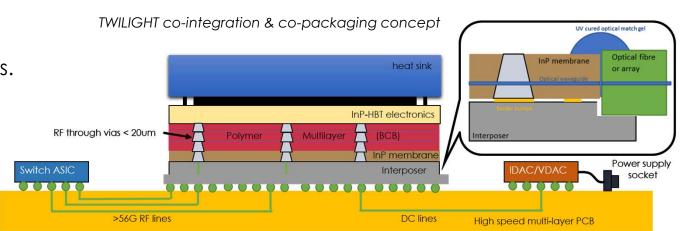


Thermal vias for passive heat dissipation from the photonics to the

System-in-Package demonstrators

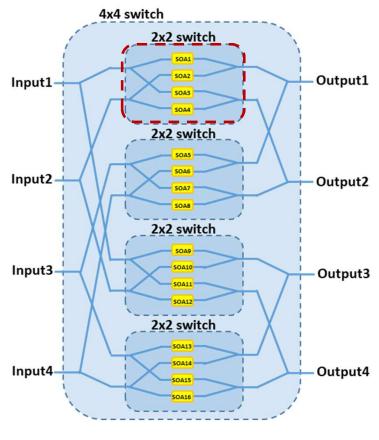
- 800 GbE and 1T optical transceivers at 1310 nm for intra-datacenter 2 and 10 km
- 800 GbE and 1T optical transceivers at 1550 nm for short inter-datacenter links up to 40 km
- 4x4 and 16x16 scalable & compact optical space switches for low latency intradatacenter connectivity

TWILIGHT objectives

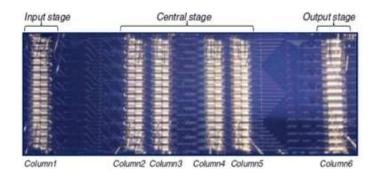


- Scale the symbol rate of optical transceivers to 112 Gbaud per lane.
- Exploit InP membrane technology for the development of high speed photonic components.
- Enable advanced system-on-chip photonic functionalities via large scale monolithic cointegration of actives and passives.
- Develop high speed electronics ICs on InP-DHBT platform.
- Wafer-scale bonding of photonics and electronics at unprecedented close distances.
- Develop Multi-Chip-Modules via co-packaging optoelectronic engines with ASIC chip.
- Develop programmable compact and scalable optical space switches for intradatacentre interconnection.
- Demonstrate up to 1Tb/s transmission over 2, 10 and 40km via laboratory experiments and real network conditions using commercial datacentre equipment.
- Demonstrate low latency all-optical intra-datacentre connectivity within a host-to-host all
 optical switching testbed interconnecting multiple NICs

TWILIGHT transceiver modules & demonstrators

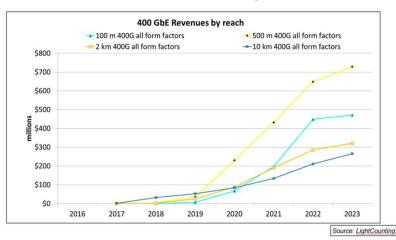

- Selective Area Growth & buttjoint process for bandgap optimization of WDM EML arrays.
- Polarization insensitivity via optimization of the gain medium.
- Flexible optical and RF routing on chip to minimize interconnection distance of photonic and electronic components.
- Material-compatible photonics and electronics platforms yielding high accuracy alignment down to the instrument limit (~ 1µm).
- Polymer multi-layer for wafer bonding fits various chip and wafer sizes.

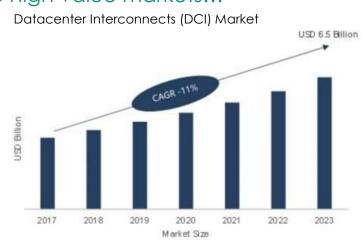
Туре	Total Capacity [Tb/s]	No. Lanes	Operating Band	Target application
Module 1, Tx	0.8	4	C-band DWDM	40km, Inter-DC
Module 2, Rx	0.8	4	C-band DWDM	40km, Inter-DC
Module 3, Tx	0.8	4	O-band LAN-WDM	2, 10km, Intra-DC
Module 4, Rx	0.8	4	O-band LAN-WDM	2, 10km, Intra-DC
Demonstrator 1, TxRx	1.6	8	C-band DWDM	40km, Inter-DC
Demonstrator 2, TxRx	1.6	8	O-band LAN-WDM	2, 10km, Intra-DC

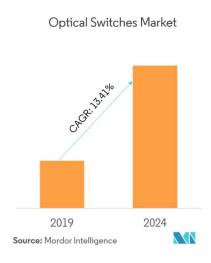

TWILIGHT 4x4 and 16x16 optical space switches

Concept of TWILIGHT optical space switch SOA-based architecture

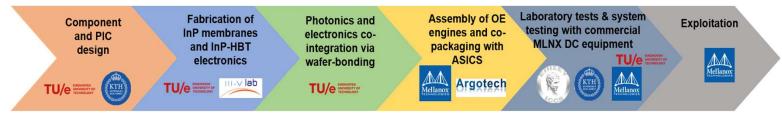
- Modular architecture based on a 2x2 switch element
- PI-SOAs and PI passive elements (MMIs)
- System-in-package integration with programmable current and voltage sources for controlling switch I/O port


Picture of a 16x16 optical switch chip based on multistage architecture developed on the generic InP photonic platform


Optical Space switch	Size	Switching time	Building blocks	Operating Band	Target application
Module 5	4x4	10s of ns	PI-SOA PI-MMIs	O-band	Board-level interconnection, intra-DC
Demonstrator 3	16x16	10s of ns	PI-SOA PI-MMIs	O-band	TOR-to-TOR, Intra-DC

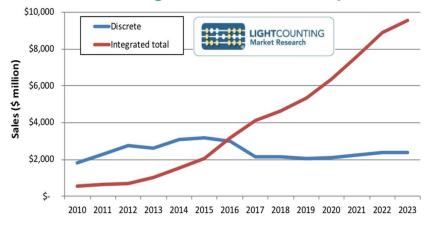

Impact

TWILIGHT technologies will penetrate high value markets...


... and will leverage significant power & cost reductions & footprint savings

- → TWILIGHT intra-DC demonstrator leverages 4-fold power consumption reduction with respect to 56G EML-based solutions and 72% power savings with respect to silicon photonics, for 2 and 10 km links.
- → TWILIGHT inter-DC demonstrator exhibits 74% power consumption benefits with respect to 28G EML-based solutions and 3 times less power consumption compared to silicon photonics, for 40 km short DCI links.
- → The cost of **TWILIGHT 1.6 transceiver demonstrators** considering volume production is estimated **0.89€/Gb/s** matching with industry requirements in the 2023-2025 timeframe.
- → TWILIGHT ultra-fast 16x16 optical space demonstrator is scalable to large I/O ports exploiting the benefits of monolithic integration and reduces footprint by more than 50%.

Exploitation



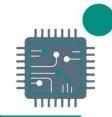
TWILIGHT will ensure European industrial leadership

- ✓ Secure pathway to market
- ✓ Industrially compatible technology platforms
- ✓ Addresses the whole value chain

TWILIGHT foregrounds will be exploited in new market opportunities

- Next generation passive optical networks (EMLs, PDs)
- 5G Fronthaul (EMLs)
- Sensing (Polarization insensitive components)
- Low latency optical switching for metro/core networks and 5G (Optical space switches)
- 600T and 1T coherent optical transceivers (InP-HBT electronics)

Towards the ne**W** era of 1.6 Tb/s System-In-Package transceivers for datacenter app**Li**cations exploiting wafer-scale co-inte**G**ration of InP membranes and InP-**H**BT elec**T**ronics


Contact

Project Coordinator: Hercules Avramopoulos

Professor, ICCS/NTUA

Email: hav@mail.ntua.gr
tel: +30 210 772 2076

https://ict-twilight.eu/

